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ABSTRACT

This paper studies the problem of target speaker signal exaction and
antiphasic rendering with an array of microphones in the scenarios
where there are two active speakers. Based on the important findings
achieved in the psychoacoustic field as well as our recent works
on single-channel speech enhancement, we present a rendering
based approach in which a temporal convolutional network (TCN)
is trained to take the multiple signals observed by the microphone
array as its inputs and generate two output (binaural) signals. The
TCN is trained in such a way that, when binaural output signals
are listened by the listener with headsets, the speech signal from
the desired speaker is perceived on one side of and close to the
listener’s head, while the competing speech signal is perceived on the
opposite side and also away from the listener’s head. Benefited from
rendering and the signal-to-interference ratio (SIR) improvement,
this antiphasic binaural presentation enables the listener to better
focus on the target speaker’s signal while ignoring the impact of the
competing speech. The modified rhyme tests (MRTs) are performed
to validate the superiority of the proposed method.

Index Terms— Antiphasic presentation, speaker extraction,
modified rhyme test, multiple-input/binaural-output.

1. INTRODUCTION

In real-world applications, a speech signal of interest is inevitably
contaminated by interference, reverberation, and noise, which impair
speech quality and/or speech intelligibility [1], thereby degrading
the performance of systems such as speech coding, speech com-
munication, and automatic speech recognition (ASR). Therefore,
source extraction, which aims at extracting the target signal from
its corrupted observations, has attracted a significant amount of
attention [2, 3] and many different methods have been developed
over the last few decades such as beamforming [4–8], statistical
techniques [9–14], and deep learning based approaches [15–19].
Although they have demonstrated promising performance, most
existing methods still suffer from a number of limitations. Not only
do they degrade significantly in performance when the signal-to-
interference ratio (SIR) is low, but they generate only a monaural
estimate of the target speech signal, which obviously do not take
advantage of the human binaural perception system.

Research in psychoacoustics has shown that speech intelligi-
bility can be significantly improved by using binaural presentation
in comparison with the monaural presentation [21–23]. There are
three kinds of binaural presentations depending on the perceptual
regions of the target signal and the interference, i.e., homophasic,
heterophasic, and antiphasic [24, 25]. The antiphasic presentation
in which the target and interference signals are perceived at the
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opposite directions has the highest speech intelligibility, which is
followed by the heterophasic presentation. The homophasic case
where both the target and interference signals are perceived at the
middle of the listener’s head correpsonds to the lowest intelligibility
[24, 25].

Motivated by the findings in the psychoacoustic field, we de-
veloped recently an antiphasic rendering approach to single-channel
speech enhancement [23]. This work is an extension of the work
in [23] and we present a multiple-input/binaural-output (MIBO)
antiphasic speaker signal extraction method, where a temporal
convolutional network (TCN) is adopted to achieve antiphasic pre-
sentation. Thus, the proposed approach is referred to as TCN-MIBO.
The TCN-MIBO network renders the target signal to one side to
the listener’s head and the interference signal to the other side, and
meanwhile the target signal is rendered close to the listener’s head
while the interference is rendered away from the listener’s head to
improve SIR. Benefiting from the antiphasic presentation and SIR
improvement, the listener is able to better focus on the target signal,
leading to intelligibility improvement. Experiments are carried out
to demonstrate the superiority of the proposed method.

2. SIGNAL MODEL AND PROBLEM FORMULATION

We consider the acoustic scenario where two competing speakers
coexist. The signals observed by a microphone array can be
expressed as

ym(t) = htar,m(t) ∗ star(t) + hint,m(t) ∗ sint(t), (1)

where t is the time index, m ∈ {1, 2, . . . ,M} is the micro-
phone index, star(t) and sint(t) denote, respectively, the target and
interference signals, htar,m(t) and hint,m(t) are the room impulse
responses (RIRs) from the target source and interference to the
mth microphone, respectively, and ∗ denotes the linear convolution
operation. Note that we neglect the noise term in the signal model to
better illustrate the principle. The additive noise can be treated in a
similar way to [23].

Unlike most existing target speaker signal extraction methods,
which generate only a monaural estimate of the target signal, i.e.,
ŝtar(t), the presented method generates two (binaural) output signals:
xL(t) and xR(t), for the left and right ears, respectively. The training
target of the network are, therefore, xL(t) and xR(t), which are
constructed during the training process as follows:

xL(t) = htar,L(t) ∗ star(t) + hint,L(t) ∗ sint(t), (2)
xR(t) = htar,R(t) ∗ star(t) + hint,R(t) ∗ sint(t), (3)

where htar,L(t) and htar,R(t) are binaural RIRs (BRIRs) from the
designed location of the rendered target speech signal to the left
and right ears, and hint,L(t) and hint,R(t) are the BRIRs from the
designed location of the rendered interference signal to the left and



Fig. 1. (a) Diagram of the proposed rendering network.“CLN” stands for channel-wise layer normalization. Symbol “C” represents
concatenation. There are four TCN stacks in the render part, each consists of 8 TCN blocks. The first TCN block of each TCN stack
takes the speaker embedding as an additional input. The ResNet stack consists of three ResNet blocks. CE and SDI denote the cross entropy
and signal to distortion ratio, respectively. Symbols “x” and “+” denote element-wise multiplication and addition. (b) Structure of the
ResNet block, where “BN” is short for batch normalization. (c) Structure of the TCN block, where “GLN” is global layer normalization and
“DeConv” means dilated depth-wise convolution. (d) Example of test process, where L is the kernel size of the 1D-Conv in speech encoder.

right ears, respectively. The perceived directions/zone of the target
speech and interference signals in the binaural outputs are controlled
by the corresponding BRIRs, which are selected from a BRIR
database [26]. In this paper, the target signal will be rendered to
the left-hand side to the listener’s head while the interference will be
rendered to the right-hand side (note that they can also be rendered
the other way around). To distinguish the target speaker and the
interference signals, a reference signal sref

tar(t), which is a registered
speech signal from the target speaker, is needed to supervise the
rendering.

3. TCN-MIBO NETWORK

The structure of the TCN-MIBO rendering network is shown in
Fig. 1(a). Similar to the state-of-the-art extraction network Spex+
[18], the proposed network consists of four parts: a speaker encoder,
which is used to extract the speaker embedding from the reference
signal; a speech encoder, which transforms the multichannel obser-
vation signals into its latent representation; a rendering network,
which generates binaural representations in the latent space; and a
speech decoder, which transforms the latent binaural representations
back to the time domain signals.

3.1. Speaker Encoder

For the speaker encoder, we adopt the same structure as that
in Spex+ [17, 18]. A one dimensional convolution layer (1D-
Conv) first transforms the reference signal with length T0 (the
length of the longest reference signal within the batch during
training and can be any value in test process), i.e., sref

tar =[
sref

tar(1) · · · sref
tar(t) · · · sref

tar(T0)
]T

, into its latent representa-
tion. The number of filters of this layer is 256, the kernel sizeL is 20,
and the stride is 10. After a channel-wise layer normalization (CLN),

three residual blocks ResNet, as shown in Fig. 1(b), and the last
1D-Conv with a mean pooling operation, the speaker embedding
v ∈ Rd0×1 is extracted. We set the dimension of the speaker
embedding, i.e., d0, to 256.

The ResNet block consists of two 1× 1 convolution layer (1x1-
Conv, with the kernel size and the stride being 1), each followed
by a batch normalization (BN) and a parametric rectified linear
unit (PReLU). A skip connection is used to add the input to the
output of the second BN. All parameters are set to the same as those
in Spex+ [18].

3.2. Speech Encoder

The input of the encoder is the multichannel observation signals
with length of T1 (set to 4 seconds during training and can be any
value in test process), Y = [y(1) · · · y(t) · · · y(T1)] ∈
RM×T1 , where y(t) = [y1(t) · · · ym(t) · · · yM (t)]T is
the microphone array observation signal vector at time index t. The
speech encoder is a 1D-Conv, followed by a PReLU. The kernel size
and the stride of the 1D-Conv are set to 20 and 10, respectively. The
number of input channels is equal to the number of microphones,
i.e., M , and the output dimension d1 is set to 256. Thus, the
output of the encoder is a latent representation of the observation
signals, Ỹ ∈ Rd1×T ′

1 , where T ′1 is the length of the sequence after
convolution.

3.3. Rendering Network

The rendering network begins with a 1x1-Conv, whose output
dimension is set to be the same as the input dimension d1. The
rendering network consists of 4 TCN stacks. There are 8 TCN blocks
in each stack, which is shown in Fig. 1(c). The configurations of
TCN blocks are the same as those in Spex+ [18]. The rendering



network takes the speaker embedding v together with the latent
mixture representation Ỹ as input to generate binaural masks M =[

ML

MR

]
∈ R2d1×T ′

1 , which can be regarded as the left-ear

and right-ear transfer functions in the latent space. The binaural
representations in the latent space are calculated as XL = ML⊗Ỹ ∈
Rd1×T ′

1 and XR = MR ⊗ Ỹ ∈ Rd1×T ′
1 , where ⊗ denotes the

element-wise multiplication.

3.4. Decoder

The decoder transforms the latent binaural representations, XL and
XR, back to the time domain, thereby reconstructing the wave-
forms x̂L = [x̂L(1) · · · x̂L(t) · · · x̂L(T1)]

T and x̂R =

[x̂R(1) · · · x̂R(t) · · · x̂R(T1)]
T using a deconvolution oper-

ation.

3.5. Training Objective

Jointly training the speaker classification and the rendering network
is a multi-task learning problem. For speaker classification, we adopt
the cross entropy (CE) [27] as the loss function, which is defined as

JCE = −
Ns∑

ns=1

Pns log P̂ns , (4)

where Pns = {0 or 1} is the ground-truth label of the nsth speaker,
Ns is the number of speakers in the training set, and P̂ns is the
predicted probability.

For the rendering network, we choose the signal-to-distortion
index (SDI) [28] as the cost function, which is defined as

JSDI,i = 10 log10

{
E [xi(t)− x̂i(t)]2

E [x2i (t)]

}
, i = L,R, (5)

where JSDI,L and JSDI,R denote, respectively, the SDIs of signals
estimated for the left and right ears. We use JSDI, the average of
JSDI,L and JSDI,R, as the extraction loss function. JSDI and JCE are
combined to optimize the proposed framework. So, the overall cost
function is

J = JSDI + λJCE, (6)

where λ is a parameter, which is set empirically to 10 in this work.

4. SIMULATIONS

4.1. Setup

4.1.1. Training Data

The training and development sets are constructed as follows. The
target speech, reference and interference signals are taken from the
Wall Street Journal (WSJ0) database [29] with the same configura-
tion of the WSJ0-2mix-extr database [17]. All signals are resampled
to 8 kHz. We align the length of the target signal and the interference
in a “max” way, i.e, the shorter one is padded with zeros at the end
to have the same length as the longer one. Then, a room of size
Lx×Ly×Lz is considered, where the length Lx, the width Ly , and
the height Lz are generated with a uniform distribution, respectively,
in the range of [8 m, 10 m], [6 m, 8 m], and [3 m, 4 m]. For ease
of exposition, we use the 3-dimensional (3D) Cartesian coordinate
system to specify the positions and the one corner on the floor is used
as the origin of the coordinate system. A uniform linear microphone
array consisting of 6 sensors with an element spacing of 5 cm was
placed horizontally with the array center at

(
Lx
2

m, 1m, 1.5m
)
. The

Fig. 2. Percentage of direction perception results.

positions of both the target speech source and the interference source
are randomly generated where the x−, y−, and z−coordinates
are all generated with a uniform distribution with ranges being,
respectively, [1 m, (Lx − 1) m], [1 m, (Ly − 1) m], and [1 m, 2 m].
The RIRs are generated with the python package gpuRIR [30],
which is based on the image model [31]. The reverberation time
T60 is set to the range of [180 ms, 200 ms]. The microphone array
observation signals are then obtained by convolving the clean speech
signal and the interference signal with the corresponding RIRs as
in (1). The SIR is controlled to be in the range of [−5 dB, 5 dB].
The training targets, i.e., the binaural signals, were generated by
convolving the clean speech signal and the interference signals with
the desired BRIRs selected from [26] according to (2) and (3).

4.1.2. Training Configuration

For the baseline, we considered a network, which has a similar
network structure as TCN-MIBO. The only difference is that the
output of the baseline is a monaural estimation of the target speech
signal. Note that the baseline can be regarded as an extension
of Spex+ [18] from single-channel input to multichannel input.
In the rest of the paper, the baseline is denoted as TCN-multiple
input/single output (TCN-MISO).

To train TCN-MISO and TCN-MIBO, adaptive moment estima-
tion (Adam) [32] is used as the optimizer. The initial learning rate
is set to 10−3, and it is reduced to half if the training loss on the
development set does not decrease within 3 consecutive epochs. The
training process stops if the loss on the development set does not
decrease for successive 20 epochs.

4.2. Experiments

In all experiments, RIRs are generated in the same way as in the
training set.

4.2.1. Direction Perception

To evaluate the rendering ability of TCN-MIBO, we generated 40
mixtures with WSJ0-2mix-extr test set, which are not seen in the
training set. The SIR is set to 0 dB. The target speech signal is
rendered to the left-hand side with 1 m away from the middle of the
listen’s head, while the interference signal is 1 m away on the right-
hand side. Five normal hearing listeners were asked to listen to the
binaural outputs and judge the directions of the target speech and the
interference signals. Only when their judgements on the directions
of both the target speech and the interference sources are correct,
the result is deemed to be correct. The direction perception results
are shown in Fig. 2. One can see that 93% of the listeners’ choices
are correct for both signals, which validates the rendering ability of



Fig. 3. Illustration of the signal construction.

Table 1. The output SIR of the estimated binaural signals by TCN-
MIBO and the ground truth SIR (dB).

1 m 2 m 4 m
Ground truth −1.06 5.01 10.8

TCN-MIBO −1.00 5.12 11.0

TCN-MIBO. Analyzing the signals marked as “uncertain” by most
of the listeners, we found that the two active speakers in the mixed
signals are difficult to distinguish, which causes the failure of the
speaker encoder. This problem could be solved by including more
speakers in the training set, which is however beyond the scope of
this paper.

4.2.2. Impact of Rendering Distance

In this set of experiments, we evaluate the impact of the rendering
distance on the performance of TCN-MIBO by measuring the output
SIRs in the binaural presentation. 20 observation signals were
constructed in a way as illustrated in Fig. 3. Both the target speech
and interference signals are selected from the WSJ0-2mix-extr test
set and they were arranged to be 4-second long. The 4-second target
speech signal is a concatenation of the following 4 segments: a 1-
second segment of speech signal, 0.5-second segment of silence,
another 1-second segment of speech signal, and 1.5-second segment
of silence, while the interference speech signal is concatenated in
the opposite order. The SIR of non-overlapped parts was set to 0 dB.
The multichannel observation signals are then obtained according
to (1).

The output SIR of the estimated binaural signals is computed as

biSIR = 10 log10

{
E
[
x̃2L(t)

]
E [x̃2R(t)]

}
, (7)

where x̃L(t) is the first 1-second segment of the signal estimated
for the left ear and x̃R(t) is the last 1-second segment of the signal
estimated for the right ear.

Table 1 lists the biSIR achieved by TCN-MIBO rendering
network and the ground truth SIR, which is computed with (7) by
constructing the ground truth signals for the left and right ears as
in (2). As seen, the biSIR of the estimated binaural signals by TCN-
MIBO is close to the ground truth, which validates its capability in
adjusting distance. By rendering the interference further away, the
SIR is significantly improved.

4.2.3. Listening Tests

Finally, we evaluate the intelligibility improvement achieved by
TCN-MIBO through listening tests. We adopted the modified

Fig. 4. Percentages of correct answers. Simulation conditions:
T60 ∈ [180 ms, 200 ms], SIR=−5 dB, 0 dB.

rhyme test (MRT), which is a standardized listening test for speech
intelligibility measurement [33]. In the MRT database, there are 50
sets of rhyming keywords (each consists of 6 keywords), e.g., [rent,
tent, dent, bent, sent, went]. Every keyword is presented in a carrier
sentence, e.g., “please select the word went.” In total, 50× 6 carrier
sentences were recorded by each of the 4 female and 5 male native
English speakers. We arbitrarily selected 48 utterances from four
male speakers and four female speakers with 6 utterances from each
speaker: one sentence is used as the reference signal and the other
five sentences are used as the target signals. We randomly picked
up forty sentences from the WSJ0-2mix-extr test set [17] and used
them as interference signals. The input SIRs were set to −5 dB and
0 dB. We considered two configuration for TCN-MIBO: the target
signal was rendered to 1m away from the middle of the listen’s head
on the left-hand side, while the interference was rendered to 1m and
4m away but on the right-hand side. We refer them as TCN-MIBO-
1m and TCN-MIBO-4m, respectively. Five normal hearing listeners
were asked to select the keyword they perceive.

The percentage of correct answers of the mixed signals and sig-
nals estimated by TCN-MISO, TCN-MIBO-1m, and TCN-MIBO-
4m are depicted in Fig. 4. One can see that when the input
SIR = 0 dB, all methods can improve speech intelligibility and
TCN-MIBO-4m achieves highest speech intelligibility, which is
benefited from rendering as well as SIR improvement. Meanwhile,
TCN-MIBO-1m, which only benefited from rendering, achieves the
similar number of correct answers as compared to TCN-MISO.
In the case where input SIR =−5 dB, TCN-MISO fails in im-
proving speech intelligibility due to target speech distortion and
TCN-MIBO-1m significantly outperforms TCN-MISO and TCN-
MIBO-4m, indicating that rendering is more helpful in improving
intelligibility particularly when SIR is low.

5. CONCLUSIONS

This paper presented a deep learning based multiple-input/binaural-
output antiphasic rendering method, in which a TCN was trained to
take the multichannel signals observed at a microphone array as its
inputs and generate binaural output signals. The TCN was trained
in such a way that, when binaural output signals are listened by the
listener with headsets, the speech signal from the target speaker is
perceived on one side of and close to the listener’s head, while the
competing speech signal is perceived on the opposite side and also
away from the listener’s head. Thanks to the antiphasic rendering
and the SIR improvement, the deep learning based antiphasic bin-
aural presentation enables the listener to better focus on the target
speaker’s signal while ignoring the impact of the competing speech.
The MRT results validated the feasibility and superiority of the
proposed method.
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